Exercise 19

import os

import numpy as np

import polars as pl

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

from sklearn.model selection import train test split, StratifiedKFold,
GridSearchCV

from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion matrix

from sklearn.utils import resample

Import data and clean
leads = (pl.read parquet(os.path.join('data', 'leads.parquet'))

Make the outcome binary where "Qualified" =1
.with columns(
pl.when(pl.col('Stage') == 'Qualified').then(1)
.when(pl.col('Stage') == 'Disqualified').then(0)

.alias('qualified')

)

Dummy code Industry, Employees, TimeZone, LeadSource, and Employeeld

.to_dummies (

columns = ['Industry', 'Employees', 'TimeZone', 'LeadSource',
'"Employeeld'],
drop first = False

)

.select(pl.exclude('Stage', 'Amount', 'Industry Business',
"Employees Small', 'TimeZone EST', 'LeadSource Purchased List',
"Employeeld 1'))

Log-transform all activity counts

.with columns((pl.col('ActivityTypeEmail') +
1).log().alias('log ActivityTypeEmail'))

.with columns((pl.col('ActivityTypePhone Call') +
1).log().alias('log ActivityTypePhoneCall'))

.with columns((pl.col('ActivityTypeEmail Response') +
1).log().alias('log ActivityTypeEmailResponse'))

.with columns((pl.col('ActivityTypeMeeting"') +
1).log().alias('log ActivityTypeMeeting'))

.with columns((pl.col('ActivityTypelLead Handraise') +
1).log().alias('log ActivityTypelLeadHandraise'))

.with columns((pl.col('ActivityTypeWeb Schedule') +
1).log().alias('log ActivityTypeWebSchedule'))

Rename columns to remove spaces

.rename({
'Industry Construction & Manufacturing':
"Industry ConstructionManufacturing',
'Industry Government & Non-Profits': 'Industry GovernmentNonProfits',
'Industry Professional Services': 'Industry ProfessionalServices',
'LeadSource Trade Shows and Events': 'LeadSource TradeShowsandEvents',
'LeadSource Web Registration': 'LeadSource WebRegistration'
})
Remove the original activity count columns
.select(
pl.exclude(
"ActivityTypeEmail', 'ActivityTypePhone Call', 'ActivityTypeEmail
Response',
"ActivityTypeMeeting', 'ActivityTypelLead Handraise',
"ActivityTypeWeb Schedule'
)
)

Specify the design matrix and outcome
X = leads.select(pl.exclude('qualified'))
y = leads.select('qualified"')

Specify predictors
predictors = [
"Industry Airlines', 'Industry CPG',
'Industry ConstructionManufacturing', 'Industry Consulting',
'Industry Education', 'Industry Finance', 'Industry GovernmentNonProfits',
'Industry Luxury', 'Industry Marketing', 'Industry Media',
"Industry Medical',
"Industry Other', 'Industry ProfessionalServices', 'Industry Retail',

'Industry Tech', 'Industry Utilities', 'Industry eCommerce',

'Employees Large',
'"Employees Medium', 'Employees Unknown', 'TimeZone CST', 'TimeZone MST',
'TimeZone PST', 'TimeZone Unknown', 'LeadSource TradeShowsandEvents',
'LeadSource WebRegistration', 'days elapsed', 'created quarter',

‘contact quarter', 'latest quarter', 'Employeeld 2', 'Employeeld 3°',
'EmployeeId 4', 'EmployeeId 5', 'log ActivityTypeEmail',
'log ActivityTypePhoneCall', 'log ActivityTypeEmailResponse',
'log ActivityTypeMeeting', 'log ActivityTypelLeadHandraise',
‘log ActivityTypeWebSchedule'
]
Split data into training (temp) and testing data
X train, X test, y train, y test = train test split(
X, y, test size = 0.2, random state = 42, stratify = y.to numpy()
)
y train = np.ravel(y_train.to numpy())
y test = np.ravel(y test.to numpy())

Create a pipeline

ridge pipe = Pipeline([
('feature_engineering', StandardScaler()),
('classification', LogisticRegression(penalty = '12'))

1

Create a grid using a log scale (inverse of regularization strength)
hyper grid = {'classification C': np.logspace(-10, 10, 30)}

Use the grid to tune hyperparameters via cross-validation
kfold cv = StratifiedKFold(n_splits = 5)
tune = GridSearchCV(
ridge pipe, hyper grid, scoring = 'accuracy',
cv = kfold cv, n jobs = 1, refit = True
)
tune.fit(X train, y train)

Extract the best hyperparameter and CV accuracy
best C = tune.best params ['classification C']
best cv _score = tune.best score_

print(
f'Best C: {best C}',
f'Best CV Accuracy: {best cv score:.4f}',
sep = ‘\n'

)

Extract point estimates from refit best estimator

best estimator = tune.best estimator

ridge final = best estimator.named steps['classification']
intercept = ridge final.intercept .ravel()

slopes = ridge final.coef .ravel()

point est = np.concatenate([intercept, slopes])

point est

Update the pipeline for bootstrapping
ridge pipe = Pipeline([

('feature _engineering', StandardScaler()),

('classification', LogisticRegression(penalty = '12', C = best C))
1)

Bootstrap confidence intervals
n_samples = 100
boot est = np.empty((n_samples, len(point est)))
for b in range(n_samples):
Resample data with replacement

X b, y b = resample(X train, y train, replace = True, random state = 42 + b)

Fit logistic regression on resampled data
ridge pipe.fit(X b, y b)
ridge b = ridge pipe.named steps['classification']

Extract point estimates using resampled data
intercept b = ridge b.intercept .ravel()

slopes b = ridge b.coef .ravel()

point est b = np.concatenate([intercept b, slopes b])

Save point estimates using resampled data
boot est[b, :] = point est b

ci lower
ci upper

np.percentile(boot est, 2.5, axis=0)
np.percentile(boot est, 97.5, axis=0)

OQutput of point and interval estimates
int est = pl.DataFrame({
'predictors': ['Intercept'] + predictors,
'point est': point est,
'ci lower': ci lower,
'ci upper': ci_upper

})

Plot the confidence intervals
plt.figure(figsize=(4, 4))
plt.errorbar(
int est['point est'],
int_est['predictors'],
xerr=[
int est['point est'] - int est['ci lower'],
int _est['ci upper'] - int _est['point est']
1,

fmt="'0",
capsize=5,
label="'Estimates"')
plt.axvline(0, color="'red', linestyle='--', label='y=0")

OQutput of point and interval estimates
int_est = pl.DataFrame({
'predictors': ['Intercept'] + predictors,
'point est': point est,
‘ci lower': ci lower,
'ci upper': ci upper

})

Plot the confidence intervals

plt.figure(figsize=(4, 4))
plt.errorbar(
int est['point est'],
int est['predictors'],
xerr=[
int est['point est'] - int est['ci lower'],
int est['ci upper']l - int est['point est']
1,
fmt="0",
capsize=5,
label='Estimates')
plt.axvline(0, color='red', linestyle='--', label='y=0")

Best C: 0.0007880462815669921
Best CV Accuracy: 0.9871

Create a pipeline for lasso regression
lasso _pipe = Pipeline([

('feature_engineering', StandardScaler()),

('classification', LogisticRegression(penalty='11', solver='liblinear')) #
L1 requires liblinear or saga

1)

Create a grid using a range of log spaces (inverse of regularization
strength)
hyper grid = {'classification C': np.logspace(-10, 10, 30)}

Use the grid to tune hyperparameters via cross-validation
kfold cv = StratifiedKFold(n_splits=5)
tune = GridSearchCV(
lasso_pipe, hyper grid, scoring='accuracy',
cv=kfold cv, n_jobs=1, refit=True
)

tune.fit(X train, y train.ravel())

Extract the best hyperparameter and CV accuracy
best C = tune.best params ['classification C']
best cv_score = tune.best score_

print(
f'Best C: {best C}',
f'Best CV Accuracy: {best cv score:.4f}',
sep="\n'

Extract point estimates from refit best estimator

best estimator = tune.best estimator

lasso_final = best estimator.named steps['classification']
intercept = lasso final.intercept .ravel()

slopes = lasso final.coef .ravel()

point est = np.concatenate([intercept, slopes])

point est

Update the pipeline for bootstrapping
lasso _pipe = Pipeline([
('feature_engineering', StandardScaler()),
('classification', LogisticRegression(penalty='11', solver='liblinear',
C=best C))
1)

Bootstrap confidence intervals
n_samples = 100
boot est = np.empty((n_samples, len(point est)))
for b in range(n_samples):
Resample data with replacement
X b, y b = resample(X train, y train, replace=True, random_ state=42 + b)

Fit logistic regression on resampled data
lasso _pipe.fit(X b, y b)
lasso b = lasso pipe.named steps['classification']

Extract point estimates using resampled data
intercept b = lasso b.intercept .ravel()

slopes b = lasso b.coef .ravel()

point est b = np.concatenate([intercept b, slopes b])

Save point estimates using resampled data
boot est[b, :] = point est b

ci lower = np.percentile(boot est, 2.5, axis=0)
ci upper = np.percentile(boot est, 97.5, axis=0)

OQutput of point and interval estimates
int est = pl.DataFrame({
'predictors': ['Intercept'] + predictors,
'point est': point est,
'ci lower': ci lower,
'ci upper': ci_upper

})

Plot the confidence intervals
plt.figure(figsize=(4, 4))
plt.errorbar(
int _est['point est'],
int_est['predictors'],
xerr=[
int _est['point est'] - int est['ci lower'],
int_est['ci upper'] - int est['point est']
1,
fmt='0",
capsize=5,
label="'Estimates"')
plt.axvline(0, color='red', linestyle='--', Tlabel='y=0")
plt.legend()
plt.show()

Best C: 1le-10
Best CV Accuracy: 0.9870

Iog Aﬁ)t V-Y %P

RSUNE

(L g
<20 o
S 1
| T T v o I

e
drxan

SGirassirrns

LeadsbBP02 AL b‘;:ga =,1
1)
ERRIQ¥EE N
IndUsiy g I’{!::
i

GOJ;‘? ;5.. % J

‘vn-.
ﬂn.- D \oq

Industry_Constrd&tfs fe

Ind r#

—— y=0
@ Estimates

-0.04 -0.02 0.00 0.02

Create a pipeline for elastic net regression
elastic net pipe = Pipeline([
('feature _engineering', StandardScaler()),
('classification', LogisticRegression(
penalty = 'elasticnet’,
solver = 'saga', max_iter=5000, random state=42

0.04

))
1)

Create a grid using a log scale (inverse of regularization strength) and a
range of 11 ratios
hyper grid = {
‘classification_ C': np.logspace(-10, 10, 30),
‘classification 11 ratio': [0.1, 0.25, 0.5, 0.75, 0.9]
}

Use the grid to tune hyperparameters via cross-validation
kfold cv = StratifiedKFold(n_splits=5)
tune = GridSearchCV(
elastic _net pipe, hyper _grid, scoring='accuracy',
cv=kfold cv, n jobs=1, refit=True
)

tune.fit(X train, y train.ravel())

Extract the best hyperparameters and CV accuracy
best C = tune.best params ['classification C']

best 11 = tune.best params ['classification 11 ratio']
best cv score = tune.best score

print(
f'Best C: {best C}',
f'Best 11 ratio: {best 11}°',
f'Best CV Accuracy: {best cv _score:.4f}',
sep = ‘\n'
)

Extract point estimates from refit best estimator

best estimator = tune.best estimator

elastic _net final = best estimator.named steps['classification']
intercept = elastic net final.intercept .ravel()

slopes = elastic net final.coef .ravel()

point est = np.concatenate([intercept, slopes])

point est
Update the pipeline for bootstrapping
elastic net pipe = Pipeline([
('feature engineering', StandardScaler()),
('classification', LogisticRegression(
penalty = 'elasticnet',
solver = 'saga', max_iter=5000, random state=42, C=best C,
11 ratio=best 11
))
1)

Best C: 0.45203536563602403
Best 11 ratio: 0.1
Best CV Accuracy: 0.9871

"\n# Update the pipeline for bootstrapping\nelastic net pipe = Pipeline([\n
('feature_engineering', StandardScaler()),\n ('classification',
LogisticRegression(\n penalty = 'elasticnet', \n solver = 'saga',
max_iter=5000, random state=42, C=best C, 11 ratio=best 11\n))\n])\n\n#
Bootstrap confidence intervals\nn_samples = 100\nboot_est =
np.empty((n_samples, len(point est)))\nfor b in range(n samples):\n #
Resample data with replacement\n X b, y b = resample(X train, y train,
replace=True, random state=42 + b)\n\n # Fit logistic regression on resampled
data\n elastic net pipe.fit(X b, y b)\n elastic net b =

elastic_net pipe.named steps['classification']\n\n # Extract point estimates
using resampled data\n intercept b = elastic net b.intercept .ravel()\n
slopes b = elastic net b.coef .ravel()\n point est b =
np.concatenate([intercept b, slopes b]l)\n\n # Save point estimates using
resampled data\n boot est[b, :] = point est b\n\nci_ lower =
np.percentile(boot est, 2.5, axis=0)\nci upper = np.percentile(boot est, 97.5,
axis=0)\n\n# Output of point and interval estimates\nint est =
pl.DataFrame({\n ‘'predictors': ['Intercept'] + predictors,\n ‘'point est':
point _est,\n 'ci lower': ci lower,\n 'ci upper': ci upper\n})\n\n# Plot the
confidence intervals\nplt.figure(figsize=(4, 4))\nplt.errorbar(\n

int est['point est'], \n int est['predictors'],\n xerr=[\n

int _est['point est'] - int est['ci lower'], \n int est['ci upper'] -
int est['point est']\n 1, \n fmt='o', \n capsize=5, \n
label="Estimates')\nplt.axvline(0, color='red', linestyle='--"',

label="y=0")\nplt.legend()\nplt.show()"

For this analysis, we ran three types of penalized regression: ridge, lasso, and elastic net. From
our accuracy scores, ridge and elastic net both had the highest accuracy at 0.9871, while lasso
regression had an accuracy of 0.9870, which was the same accuracy as the non-penalized logit
model. Because of computational complexity, we did not create a confidence interval plot for the

elastic net regression model. For the ridge regression confidence interval plot, we see thatmost
of our predictors are not statistically significant, including the dummy variables for every industry
and quarters for creation/reponse. Having a greater level of activity for things such as meetings,
email responses, lead handraises, and web schedules are associated with a higher log-likelihood
of being a qualified lead. Having a higher number of calls and emails is associated with a lower
log-likelihood of being a qualified lead.

11

A02332124
For this analysis, we ran three types of penalized regression: ridge, lasso, and elastic net. From our accuracy scores, ridge and elastic net both had the highest accuracy at 0.9871, while lasso regression had an accuracy of 0.9870, which was the same accuracy as the non-penalized logit model. Because of computational complexity, we did not create a confidence interval plot for the elastic net regression model. For the ridge regression confidence interval plot, we see that most of our predictors are not statistically significant, including the dummy variables for every industry and quarters for creation/reponse. Having a greater level of activity for things such as meetings, email responses, lead handraises, and web schedules are associated with a higher log-likelihood of being a qualified lead. Having a higher number of calls and emails is associated with a lower log-likelihood of being a qualified lead.

